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Theory of Intracavity Frequency Doubling in 
Passively Mode-Locked Femtosecond Lasers 
TIAN RONG ZHANG, GLENN FOCHT, PAUL E. WILLIAMS, A N D  M. C.  DOWNER 

Abstract-We construct a quantitative theoretical model of an intra- 
cavity frequency doubled and passively mode-locked laser, supported 
by experimental observations with a colliding pulse mode-locked fem- 
tosecond dye laser. The major findings are that for second harmonic 
conversion efficiencies consistent with continuing laser operation ( < 5 
percent), 1) a stable mode-locking regime always exists, although it 
narrows somewhat with increasing conversion efficiency; 2) the dura- 
tion of the fundamental pulses can always be preserved, even in the 
femtosecond time domain, by readjusting saturable gain and saturable 
loss parameters; 3) the energy of the fundamental pulses can also be 
preserved under the same conditions. Both the model and observations 
contrast with previous studies of actively mode-locked and synchro- 
nously mode-locked lasers containing intracavity frequency doubling 
crystals. 

I. INTRODUCTION 
E RECENTLY demonstrated experimentally [ 11, W (21 that intracavity frequency doubling of a visible 

wavelength passively mode-locked femtosecond dye laser 
could produce perfectly synchronized femtosecond ultra- 
violet and visible pulse trains, each at 100 MHz repetition 
rate and milliwatt average power. More significantly, we 
achieved this result while preserving the pulse duration, 
frequency bandwidth, power, and mode-locking stability 
of the fundamental laser output. This result contrasted 
sharply with previous studies which showed significant 
pulse broadening, bandwidth limitation, and mode-lock- 
ing instability caused by an intracavity frequency doubler 
in actively mode-locked solid-state lasers [3] and syn- 
chronously mode-locked dye lasers [4]-[6], even though 
these lasers operated in the picosecond, rather than the 
femtosecond, time domain. In this paper, we examine 
quantitatively the underlying physical mechanisms re- 
sponsible for the more favorable performance of intracav- 
ity frequency doubled passively mode-locked lasers. Pre- 
vious theoretical analyses have examined the effect of 
intracavity frequency doubling on the actively [3] and 
synchronously [5] mode-locked lasers. Our analysis, 
however, is the first to examine the effect of intracavity 
frequency doubling on the operation of passively mode- 
locked lasers. 
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We construct a model, based on Haus’s theory of the 
passively mode-locked laser [7], which shows that satu- 
rable loss and gain media, absent in the synchronously 
mode-locked [4]-[6] and actively mode-locked [3] lasers, 
can compensate the destabilizing and pulse broadening in- 
fluence of an intracavity frequency doubling crystal. Fur- 
thermore, our model defines quantitatively the regimes of 
saturable loss, saturable gain, and second harmonic con- 
version efficiency in which stable mode-locked operation 
is possible, as well as the effect of the frequency doubler 
on pulse duration and pulse energy within the stable re- 
gime. Finally, we compare these theoretical results with 
observations using an intracavity KDP doubling crystal. 
While we experimentally demonstrated intracavity fre- 
quency doubling in a colliding pulse mode-locked laser 
[8], our model assumes no features unique to that laser. 
Our results suggest, therefore, that stable intracavity fre- 
quency doubled operation, with synchronized ultraviolet 
and visible outputs of comparable power and pulse dura- 
tion, should be generally achievable in all passively mode- 
locked lasers which employ saturable gain and loss me- 
dia. 

11. FUNDAMENTAL MECHANISMS 
Fig. 1 depicts the essential mechanisms by which sat- 

urable loss and gain media having relaxation times longer 
than the pulse duration can compensate the destabilizing 
and pulse broadening effect of an intracavity frequency 
doubler. The intracavity fundamental pulse suffers tem- 
poral broadening in the doubling crystal because power 
dependent loss selectively attenuates the peak of the pulse. 
Subsequent passes multiply this pulse broadening effect, 
as noted in previous analyses [3], [5]. Passage through a 
saturable absorber, on the other hand, selectively atten- 
uates and therefore sharpens the leading edge of the pulse. 
Analogously, saturation of the gain then sharpens the 
trailing edge. Appropriate adjustment of absorber and gain 
saturation levels can therefore precisely compensate the 
pulse broadening caused by the doubling crystal. In fact, 
a major result of our analysis is that such compensation 
is always possible in a passively mode-locked laser. Such 
compensating mechanisms were absent in the actively 
mode-locked [3] and synchronously mode-locked [4]-[61 
lasers. 

The doubling crystal introduces other sources of pulse 
broadening besides that shown in Fig. 1.  For example, 
linear group velocity dispersion broadens the fundamental 
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V,(O V*(t) v,ct, v,ct, ness. We require that the pulse envelope repeat itself after 
a round-trip traversal of the cavity. The depleted funda- 
mental pulse envelope V2( t )  after the doubling crystal can 
be related to the pulse envelope VI( 1 )  incident on the crys- 
tal by the expression [3], [12] 

FREQUENCY SATURABLE SATURABLE 
DOUBLER LOSS GAIN 

Fig. 1. Changes in the intracavity pulse envelope upon passage through 
major components of a passively mode-locked laser with an intracavity 
frequency doubler. 

pulses, particularly those in the femtosecond domain. 
Such dispersive broadening, however, is routinely com- 
pensated by a negatively dispersive intracavity prism con- 
figuration 191. In addition, the second harmonic pulses are 
broadened because of group velocity walk-off of the fun- 
damental and second harmonic pulses, necessitating a thin 
doubling crystal to generate short ultraviolet pulses. 
However, the duration of the fundamental pulse, our chief 
concern, is unaffected by this walk-off. These additional 
broadening mechanisms will therefore not be considered 
further in our analysis. 

111. THEORETICAL FRAMEWORK 
In order to analyze the events in Fig. 1 quantitatively, 

we augment Haus’s model [7] of a passively mode-locked 
laser with a frequency doubling element. While Haus ana- 
lyzed both the cases of saturable absorbers with relaxation 
times which were slow [7] and fast [lo] compared to the 
pulse duration, we confine our analysis to the case of the 
slow saturable absorber, which has resulted in the shortest 
pulse laser sources, since the effects of the intracavity fre- 
quency doubler are greatest in these shortest pulse lasers. 
We retain Haus’s basic assumption that the intracavity 
pulse is perturbed only modestly upon passing through 
each intracavity element, thus allowing perturbation ex- 
pansions to be truncated at low orders. This simplifying 
assumption leads to an analytic solution for the pulse en- 
velope function, and permits quantitative insight into basic 
physical mechanisms, although it inevitably limits the ac- 
curacy of our description of actual laser cavities to some 
extent, as discussed more fully below. We also omit ex- 
plicit treatment of the effects of self-phase modulation and 
group velocity dispersion because, as noted above, addi- 
tion of the frequency doubler introduces no substantive 
new elements into previous analyses of these effects 1113.  
Nevertheless, our analysis could easily be extended along 
the lines of Martinez et al. [ 111. 

As in Haus’s analysis 171, we trace the propagation of 
the normalized pulse electric field envelope V ( t )  around 
the optical cavity shown in Fig. 1 .  The envelope function 
V ( t )  is defined such that the cumulative energy of the 
pulse is 

E ( t )  = i‘ -CO I V ( t ’ )  1’ dt’. ( 1 )  

In addition to the elements depicted, we also include a 
bandwidth-limiting element and linear loss, for complete- 

V 2 ( t )  = V l ( t )  sech ( K V , ( t ) )  

where K is a constant related to the second harmonic con- 
version efficiency. In order for the laser to continue op- 
erating, the conversion efficiency must be small, i.e., 
K V l ( t )  << 1 .  To lowest order, the second harmonic 
power decreases the fundamental power, i.e., 

( 3 )  

Then taking the square root of the above expression, the 
output of the doubling crystal is then approximated by 

We will find it convenient to describe second harmonic 
conversion efficiency in terms of the dimensionless pa- 
rameter 

( 5 )  
K ~ E  w 3 E A P ~ ~ T P  A c - - -  - 

2 E a  

where 0 is the average second harmonic conversion effi- 
ciency, EA is the saturation energy for the absorber, E = 
E (  m) is the total energy of the pulse, rp is the pulse du- 
ration, U, is the width of the loss “well” of the band- 
width-limiting element, and a = w,T,/Q is the linear 
cavity loss, including the linear insertion loss of the dou- 
bling crystal, with w, the center frequency of the mode 
spectrum, TR the free-space cavity round-trip time, and Q 
denoting the “Q” of the optical cavity. As a numerical 
example, the value y = 0.15 indicates a conversion effi- 
ciency of 0.3 percent for 70 fs 5 nJ intracavity pulses 
passing through a 1 mm KDP crystal at the type I phase 
matching angle [2]. Our assumption of small conversion 
efficiencies is equivalent to restraining y to values of ap- 
proximately y < 2. 

Our description of the remaining elements in the cavity 
closely follows that of Haus [7]. The modification of the 
pulse envelope in the saturable gain and saturable ab- 
sorber is described by the transfer functions exp ( A  ( t ) ) 
and exp ( - B ( t ) ) ,  respectively, whereA(t)  and B ( t )  are 
the gain coefficient and loss coefficient. Hence we can 
write V 3 ( t )  = V 2 ( t )  exp ( - B ( t )  )and  V 4 ( t )  = V 3 ( t )  exp 
( A  ( t ) ). An analogous expression relates the pulse enve- 
lope V5( t )  after the bandwidth-limiting element to V4( t ) ,  
where the transfer function is obtained by expanding the 
spectrum transfer function [7] to second order in powers 
of ( w  - oo) and replacing i ( w  - w o )  by d / d t .  The gen- 
eral equation for the pulse envelope is then obtained by 
requiring repetition of the pulse envelope after one round- 
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trip: 

v5(t) = [exp ( - ~ * ~ : ( r ) / 2  - ~ ( t )  + ~ ( t )  

- c ~ ( 1  - u ; ~  d t l d t ’ ) ) ]  v,(t) 
= V , ( t  - TR + 6 T )  (6)  

where 6T is a time-delay parameter indicating deviation 
of the pulse repetition period from the free-space cavity 
round-trip time TR. Using the assumption of small change 
of the pulse in one round-trip, the total exponential trans- 
fer function can be expanded to first order. Expanding the 
final envelope function of the pulse to first order in delay 
time 6T, we obtain a differential equation for the pulse 
envelope: 

where 

is the net gain function for the cavity with doubling crys- 
tal, with U = E ( t ) / E A  as the normalized energy and the 
constants p, V ,  defined by 

Equations (7) and (8) correspond to (12) and (34) of Haus 
171, with the addition that the doubling crystal contributes 
an intensity dependent negative gain - ( 2y/EAw,)  V 2 (  t )  
as anticipated in Fig. 1. The following symbols used in 
(7) and (8) were introduced by Haus in [7]: g‘” stands 
for the gain before arrival of the pulse; q is the measure 
of small-signal loading of the saturable absorber; New’s 
parameter 1131 s = E L / E A  is the ratio of saturation ener- 
gies for gain medium and for saturable absorber. 

A solution of (7) is 

EA / 2 7 p  

V ( t )  = cosh ( t / r p )  (10) 

where Vo and the pulse duration rp are determined by sub- 
stitution of (10) into (7). In particular 

r 

+ 4 ( 1 - $)* - ; ( 1 - +) ( 1 + q - g ( f ) )  

and rp is related to Vo by 

(12) 
4P r V = - .  4 U,. 

P O  

Numerical values of the various cavity parameters can 
be estimated for an actual laser such as the colliding pulse 
laser. We estimate basic cavity parameters as follows: lin- 
ear loss a = 0.04, center frequency U” = 3 x l O I 5  s - ’  
( ho = 620 nm), round-trip time TR = 10 ns, U,. = 2.7 
x l O I 3  s-’, saturation energy of the rhodamine 6G gain 
medium EL is about 100 nJ 1141. 

For the commonly used saturable absorber DODCI, es- 
timation of the saturation energy is complicated by simul- 
taneous presence of a normal species and a photoisomer 
[ 141, which have different saturation energies at the nor- 
mal operating wavelength (620 nm). As a further com- 
plication, the saturation energy for the photoisomer (0.4 
nJ) is smaller than typical intracavity pulse energies [ 141, 
thus invalidating the small saturation approximation E < 
EA required for the analytic treatment used here. Effective 
saturation energies for both absorber species can also be 
reduced by the colliding pulse effect [ 151, [ 161. In order 
to circumvent these difficulties, we can introduce a single 
“effective” saturation energy EA = 3.5 nJ, which ap- 
proximates the combined action of the normal species and 
photoisomer without violating the approximation of small 
saturation too seriously. Using these physically reason- 
able numbers, we calculate pulse energy E = 7 nJ, and 
pulse duration rp = 70 fs at q = 1.2, g‘” = 1.95 without 
the doubling crystal ( y = 0). Using (1  1) and (12), at q 
= 1.53, g ( ; )  = 2.276, and a 1 mm thick intracavity KDP 
crystal ( y = 0.15),  we arrive at the same pulse energy 
and pulse duration. These results agree with observed val- 
ues for the colliding pulse laser [2]. Hence our model, 
noting the caveats described above, satisfactorily simu- 
lates the actual operation of the colliding pulse laser. 

IV. STABILITK 
In order to discuss the stable region for the laser, we 

examine the net gain function (8). We can describe the 
laser’s stable regime in terms of this net gain function by 
means of the following three inequalities: 

These inequalities correspond respectively to the criteria 
that the net gain must be negative before and after the 
pulse, and positive during the pulse. 

We can use the inequalities (1  3) to construct a graphical 
representation of the stable region as a function of loss 
( q ) ,  gain (g‘”), and y, as shown in Fig. 2(a). The stable 
regime is drawn as a volume in one octant of a three- 
dimensional space defined by positive values of q ,  g ‘ ; ’ ,  
and y. The stable volume is enclosed on the bottom by 
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(b) 
Fig. 2. (a) Graphical representation of the stable mode-locking regime as 

a function of saturable loss q, saturable gain g" ' ,  and the dimensionless 
second harmonic generation parameter y. The points A ,  B ,  and C cor- 
respond to stable operating conditions at y = 0, 0.6, and 1.2, respec- 
tively, with equal pulse duration and pulse energy. The (q. g " ' )  coor- 
dinates of these points are (1 .2 ,  1.95), (2.52, 3.25), and (3.84, 4 .55) ,  
respectively, and are indicated by the dashed lines in the y = 0 plane. 
(b) A projection of three horizontal cross sections of the stable volume 
corresponding to y = 0, 0.6, 1.2, and of the three points A ,  B ,  and C ,  
onto the y = 0 plane. Note the narrowing of the stable regime as y 
increases. 

the y = 0 plane, which corresponds to the absence of a 
frequency doubler, the regime of Haus's analysis [7], and 
on the sides by surfaces defined by the inequalities (13). 
The cross-hatched areas show vertical cross sections of 
the stable volume for three constant values of the loss pa- 
rameter q (1.2, 2.52, and 3.84), while the dotted areas 
show analogous horizontal cross sections for three values 
of y ( 0 ,  0.6, and 1.2).  

A number of important observations can now be made 
about Fig. 2(a). First, the stable volume forms a barrier 
between two unconnected volumes corresponding to un- 
stable operation. The unstable volume which corresponds 
to the lower values of g( i )  includes the points for which 
(13b) is not satisfied. Consequently net gain is positive 
after passage of the pulse. This volume also includes the 
points for which no laser action occurs and no solution 
exists, due to insufficient gain or excessive loss. From this 
volume, the stable mode-locking regime can be reached 
by a decrease in loss, an increase in gain, or both. In the 
other unstable volume, inequality (13a) is not satisfied. 
Consequently gain is positive even before the pulse, lead- 
ing to unstable lasing. From this volume stability is re- 
covered by an increase in loss, a decrease in gain, or both. 
The important observation is that for all values of second 
harmonic conversion efficiency shown, stable mode-lock- 
ing can always be recovered by an adjustment of gain and/ 
or loss parameters. In practice this would be done most 
easily by adjusting the pump laser power or by adjusting 
the focus of the intracavity beam on the saturable ab- 
sorber. Indeed our observations [2] showed that stable 
mode-locking was possible at all values of second har- 

monic conversion efficiency up to 0.3 percent ( y = 0.15 ). 
Fig. 2(a) predicts that stable mode-locking should also be 
possible at higher values of y. 

Second, as y increases, the stability regime narrows 
monotonically. This narrowing occurs entirely from the 
smaller g ' j ) ,  larger q side of the stable volume, as shown 
in Fig. 2(a). Consequently an arbitrary increase in y from 
within the stable volume leads ultimately to cessation of 
laser action, as expected. The stable volume drawn in Fig. 
2(a), if continued upward indefinitely, would retain finite 
width up to infinite values of y. This unphysical behavior 
is an artifact of our approximation of small second har- 
monic conversion efficiency. A more exact calculation 
would show this width vanishing at larger values of y. 
We can approximate this actual behavior by truncating the 
stable volume at y - 2. 

In practical terms, narrowing of the stability volume 
with increasing y manifests itself in increased sensitivity 
of the mode-locked laser to small perturbations in gain or 
loss. Such perturbations can arise from drifts in pump 
power, air currents, mechanical vibrations, or thermo-op- 
tic effects, as discussed in [2]. We have made approxi- 
mate measurements in the colliding pulse laser which 
compare the width of the stable regime for maximum (0.3 
percent) and for very small ( ~ 0 . 0 5  percent) conversion 
efficiencies. These measurements were made by ramping 
the pump power upward from a nonlasing condition, with 
the intracavity crystal angle-tuned for precise phase 
matching, and noting the difference in pump powers at 
which stable mode-locked operation began, on the one 
hand, and switched to multiple-pulse or other unstable op- 
eration, on the other hand. This measurement was then 
repeated with the crystal detuned far enough from phase- 
matching to reduce second harmonic conversion substan- 
tially, but not far enough to affect significantly the intra- 
cavity alignment. Both measurements were repeated nu- 
merous times to improve statistics; similar measurements 
were also made with different cavity alignments, and with 
a downward ramp in the pump power. The results con- 
sistently showed no difference in the width of the stable 
regime between maximum and small conversion efficien- 
cies, within an experimental uncertainty of approximately 
+_30 percent. 

Fig. 2(a) lends quantitative content to these observa- 
tions. At 0.3 percent conversion efficiency ( y = 0.15 ) 
Fig. 2(a) shows a narrowing of only 1 / 10 in the width of 
the stable regime, consistent with our observation of no 
observable narrowing. More importantly, Fig. 2(a) al- 
lows us to estimate how serious this narrowing may be- 
come with scaling of conversion efficiency up to l or 5 
percent. The graph shows clearly, however, that although 
narrowing continues with further increases in conversion 
efficiency, the rate of narrowing decreases. For example, 
y = 0.6 reduces the width of the stable regime by 1/3,  
but an additional doubling of conversion efficiency to y 
= 1.2 reduces the width by only an additional 25 percent, 
or to about 1 / 2  of its width at y = 0. Fig. 2(b), which 
shows projections of the stable regime onto the y = 0 
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plane for y = 0.06, and 1.2, depicts this trend more 
clearly. Consequently, we expect that narrowing of the 
stability regime should not be a serious impediment to 
intracavity frequency doubling up to conversion efficien- 
cies of roughly S percent. 

The major conclusions of this section are as follows. 1) 
Stable frequency doubled passively mode-locked opera- 
tion can always be achieved by adjusting the gain or loss, 
up to conversion efficiencies of a few percent. 2) The sta- 
bility regime narrows with increasing second harmonic 
conversion; however, this narrowing is modest, and will 
probably not seriously inhibit practical stable operation 
for conversion efficiencies up to a few percent. 

v.  DURATION AND ENERGY OF FUNDAMENTAL PULSES 

We now examine the characteristics of the fundamental 
pulses within the stable operating regime as the second 
harmonic conversion efficiency is varied. In particular we 
ask two questions. 1) How are pulse energy and pulse 
duration affected by a change in y, assuming no other cav- 
ity parameters are changed? 2) Following a change in y ,  
can the original pulse duration and pulse energy be re- 
covered by adjusting other cavity parameters? 

From (10)-(12), we obtain the energy per pulse and 
pulse duration as functions of q and g ( ' )  for different pa- 
rameters y.  In Fig. 3(a) the solutions of these equations 
are plotted as three surfaces denoting the intracavity pulse 
duration at three different values of y ( 0 ,  0.6, and 1.2) ,  
each as a function of q and g ( ' ) .  Pulsewidth surfaces with 
larger y lie above the surfaces of smaller y. Consequently 
an increase in second harmonic conversion efficiency at a 
given saturable gain and saturable loss lengthens the pulse 
duration. This conclusion agrees with our observations. 
More important, however, is our observation [2] that 
readjustment of gain and loss parameters always allowed 
recovery of the original pulse duration. Fig. 3(a) also sub- 
stantiates this observation. For example, some areas of 
the y = 0.6 surface at large values of q and g"' lie at the 
same level as, or below areas of the y = 0 surface at small 
values of q and g" ' .  A similar comment applies to the y 
= 1.2 surface. The points A ,  B ,  and C provide specific 
examples of conditions on the y = 0, 0.6, and 1.2 sur- 
faces, respectively, which yield the same calculated pulse 
duration of 70 fs. These points are also labeled in Fig. 
2(a), which shows that they are inside the stable region. 
In general, an increase in both q and g"' is required to 
maintain pulse duration as y increases. Our analysis sug- 
gests that preservation of pulse duration should be possi- 
ble up to y - 2. At higher values, modest increases in 
pulse duration are probably required to maintain stable 
operation. 

It is illuminating to contrast our algebraic expression 
for pulse duration with an analogous expression derived 
by Yamashita er al.  [SI for the synchronously mode- 
locked laser. Using (12) we express the pulsewidth rp in 
terms of the pulsewidth rp", produced in the same laser 
without the intracavity crystal 

PULSE DURATION (f, ,ec ) 

(a) 

PULSE E N E R G Y h J )  

(b) 

Fig. 3. Graphical representations of (a) intracavity pulse duration and (b) 
pulse energy at three different values of the second harmonic generation 
parameter y .  The points A ,  B ,  and C illustrate the simultaneous preser- 
vation of pulse duration and energy as y is increased, and correspond to 
the equivalently labeled points in Fig. 2 .  

This can be rewritten in terms of conversion efficiency 
y. For small 6, the pulsewidth is approximated by 

Note that an increase of the saturable loss q and of sat- 
urable gain (manifested as an increase in Vo)  compensates 
the pulse broadening influence of an increase in second 
harmonic conversion efficiency 0, i .e.,  the pulsewidth can 
be adjusted to be approximately equal to the original 
pulsewidth: rP - rp". By contrast, Yamashita et al. de- 
rived an expression [5, Eq. l ]  for the pulsewidth in a syn- 
chronously mode-locked dye laser, which for small P and 
a becomes 

(In [5] the authors use the notation aSHG for and a. for 
a . )  Note that the pulsewidth simply increases linearly 
with second harmonic conversion efficiency, without the 
possibility of compensation by an increase in saturable 
loss. It is easy to check from (15b) that the pulsewidth is 
rp - 1.37; for 0 - 0.85 percent. Expressions (15a) and 
(15b) embody the fundamental contrast between the effect 
of intracavity frequency doubling on the operation of a 
passively mode-locked laser, on the one hand, and of a 
synchronously mode-locked laser, on the other hand. 

In Fig. 3(b) we plot analogous surfaces denoting intra- 
cavity pulse energy for y = 0, 0.6, and 1.2. The plot 
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Fig. 4 .  Net gain parabolas showing gain versus normalized pulse energy 
from beginning ( U / V o  = 0)  to end ( U / V o  = 1 ) of the pulse. Curves 
A,  B,  and C correspond to the points A,  B ,  and C in Figs. 2 and 3, and 
show net loss before and after the pulse and net gain during the pulse, 
indicating mode-locking stability. Curve D depicts a stable condition of 
lower pulse energy and longer duration, while curve E depicts an un- 
stable condition. 

shows that an increase in y at constant gain and loss pa- 
rameters results in a decrease in pulse energy, as required 
by conservation of energy. On the other hand, the plots 
and observations [2] both show that the original pulse en- 
ergy can be recovered by a readjustment of gain and loss 
parameters, as was found with pulse duration. Moreover, 
there is a pair of readjusted gain and loss parameters 
g‘” ,  q such that the original pulse energy and pulse energy 
can be recovered simultaneously. To demonstrate this, the 
three points A ,  B, and C have also been plotted on Fig. 
3(b), where we find that they correspond to the same pulse 
energy as well as to the same pulse duration. 

It is also convenient to analyze the problem using the 
net-gain parabola, first introduced by Haus [7]. Fig. 4 
compares the net-gain parabolas (B-E) with the net-gain 
parabola A of the cavity without a doubling crystal. Curves 
A, B, C correspond to second harmonic conversion effi- 
ciencies of 0 = 0, 1.7, and 3.4 percent, respectively, for 
7 nJ pulse energy and 70 fs pulsewidth, similar to con- 
ditions in the colliding pulse laser [2]. Curve E depicts an 
unstable situation in which gain and absorber were left 
unchanged after insertion of the crystal. Stability can be 
recovered by increasing the gain only or by decreasing the 
saturable loss only, but at the expenses of longer pulse 
duration and lower pulse energy (curve D) .  By increasing 
both saturable gain and saturable loss, however, stable 
operation with the original pulse energy and duration is 
recovered, as depicted by B and C. 

VI. CONCLUSIONS AND EXTENSIONS 
This paper has analyzed the characteristics of a pas- 

sively mode-locked laser with an intracavity frequency 
doubling crystal. It has been shown that three major las- 
ing characteristics-stable mode-locking, pulse duration, 
and pulse energy-can be preserved for second harmonic 
conversion efficiencies up to approximately 5 percent. We 
satisfactorily model the observed qualitative behavior, and 
to a large extent the quantitative characteristics, of the 
frequency doubled colliding pulse laser. 

The remarkably stable operation and narrow pulse du- 
rations which have been observed [2] and analyzed in this 
work invite extensions to other intracavity nonlinear pro- 

cesses, such as parametric downconversion and upcon- 
version. The former process offers the potential of in- 
frared pulse generation in the 1 to 3 pm regime, while the 
latter could extend ultraviolet generation as far as 200 nm, 
both spectral regimes in which high repetition rate fem- 
tosecond source lasers are currently unavailable. While 
unseeded parametric downconversion and upconversion 
would be inefficient under most practically realizable in- 
tracavity conditions, synchronized injection of seed pulses 
from an external source could dramatically increase con- 
version efficiencies for these processes. For example, a 
LiI03 crystal could serve to downconvert intracavity fem- 
tosecond visible pulses by mixing with externally injected 
longer pulses from a semiconductor diode laser. Similarly 
an intracavity P-BaB204 crystal [17] could serve to up- 
convert ultraviolet pulses from an independent intracavity 
frequency doubler by mixing with externally injected vis- 
ible pulses, possibly the fundamental pulses from the same 
laser. These and other possibilities suggest that further 
study of intracavity nonlinear processes in passively 
mode-locked lasers may open up a wide new class of 
wavelength-extended femtosecond sources. 
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